These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: New benzimidazole derivatives as antiplasmodial agents and plasmepsin inhibitors: synthesis and analysis of structure-activity relationships.
    Author: Saify ZS, Azim MK, Ahmad W, Nisa M, Goldberg DE, Hussain SA, Akhtar S, Akram A, Arayne A, Oksman A, Khan IA.
    Journal: Bioorg Med Chem Lett; 2012 Jan 15; 22(2):1282-6. PubMed ID: 22204908.
    Abstract:
    The newly synthesized benzimidazole compounds were suggested to be inhibitors of Plasmodium falciparum plasmepsin II and human cathepsin D by virtual screening of an internal library of synthetic compounds. This was confirmed by enzyme inhibition studies that gave IC(50) values in the low micromolar range (2-48μM). Ligand docking studies with plasmepsin II predicted binding of benzimidazole compounds at the center of the extended substrate-binding cleft. According to the plausible mode of binding, the pyridine ring of benzimidazole compounds interacted with S1' subsite residues whereas the acetophenone moiety was in contact with S1-S3 subsites of plasmepsin II active center. The benzimidazole derivatives were evaluated for capacity to inhibit the growth of intraerythrocytic P. falciparum in culture. Four benzimidazole compounds inhibited parasite growth at ⩽3μM. The most active compound 10, 1-(4-phenylphenyl)-2[2-(pyridinyl-2-yl)-1,3-benzdiazol-1-yl]ethanone showed an IC(50) of 160nM. The substitution of a phenyl group and a chlorine atom at the para position of the acetophenone moiety were shown to be crucial for antiplasmodial activity.
    [Abstract] [Full Text] [Related] [New Search]