These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+ homeostasis and exocytosis in carotid glomus cells: role of mitochondria.
    Author: Yan L, Lee AK, Tse FW, Tse A.
    Journal: Cell Calcium; 2012 Feb; 51(2):155-63. PubMed ID: 22209034.
    Abstract:
    In oxygen sensing carotid glomus (type 1) cells, the hypoxia-triggered depolarization can be mimicked by mitochondrial inhibitors. We examined the possibility that, other than causing glomus cell depolarization, mitochondrial inhibition can regulate transmitter release via changes in Ca(2+) dynamics. Under whole-cell voltage clamp conditions, application of the mitochondrial inhibitors, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or cyanide caused a dramatic slowing in the decay of the depolarization-triggered Ca(2+) signal in glomus cells. In contrast, inhibition of the Na(+)/Ca(2+) exchanger (NCX), plasma membrane Ca(2+)-ATPase (PMCA) pump or sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump had much smaller effects. Consistent with the notion that mitochondrial Ca(2+) uptake is the dominant mechanism in cytosolic Ca(2+) removal, inhibition of the mitochondrial uniporter with ruthenium red slowed the decay of the depolarization-triggered Ca(2+) signal. Hypoxia also slowed cytosolic Ca(2+) removal, suggesting a partial impairment of mitochondrial Ca(2+) uptake. Using membrane capacitance measurement, we found that the increase in the duration of the depolarization-triggered Ca(2+) signal after mitochondrial inhibition was associated with an enhancement of the exocytotic response. The role of mitochondria in the regulation of Ca(2+) signal and transmitter release from glomus cells highlights the importance of mitochondria in hypoxic chemotransduction in the carotid bodies.
    [Abstract] [Full Text] [Related] [New Search]