These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cell density governs the ability of human bronchial epithelial cells to recognize serum and transforming growth factor beta-1 as squamous differentiation-inducing agents. Author: Ke Y, Gerwin BI, Ruskie SE, Pfeifer AM, Harris CC, Lechner JF. Journal: Am J Pathol; 1990 Oct; 137(4):833-43. PubMed ID: 2221015. Abstract: Sparse (75 to 2000 cells/cm2) density cultures of normal human bronchial epithelial cells uniformly undergo terminal squamous differentiation when incubated in medium containing serum (fetal bovine serum [FBS]) or transforming growth factor beta-1 (TGF-beta 1). It was found that the cell density of the culture affects the probability that a cell will respond to these differentiation-inducing agents. Thus whereas irreversible inhibition of DNA synthesis occurs in sparse cell-density cultures within 24 hours after exposure, only a transient (less than 36 hours) depression in DNA synthesis was seen in high (more than 10,000 cells/cm2) density cultures. In addition, although phase microscopic image analysis revealed that virtually all of the cells displayed a squamous morphology within 1 hour after exposure to FBS or TGF-beta 1, observations made 48 to 72 hours later showed the presence of clusters of small prolate spheroid-shaped cells surrounded by many involucrin-positive squamous-appearing cells. Only the small cells were capable of DNA synthesis and cell division as determined by autoradiography and time-lapse photomicrographic images. These replicating cells immediately undergo squamous differentiation if they are subcultured and reinoculated at low cell density and incubated in medium supplemented with FBS or TGF-beta 1. Therefore the probability that a human bronchial epithelial cell will be refractive to FBS- or TGF-beta 1 induced terminal squamous differentiation is solely a function of the cell density of the culture.[Abstract] [Full Text] [Related] [New Search]