These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The acute glucocorticoid stress response does not differentiate between rewarding and aversive social stimuli in rats.
    Author: Buwalda B, Scholte J, de Boer SF, Coppens CM, Koolhaas JM.
    Journal: Horm Behav; 2012 Feb; 61(2):218-26. PubMed ID: 22210197.
    Abstract:
    The mere presence of elevated plasma levels of corticosterone is generally regarded as evidence of compromised well-being. However, environmental stimuli do not necessarily need to be of a noxious or adverse nature to elicit activation of the stress response systems. In the present study, the physiological and neuroendocrine responses to repeated social stimuli that can be regarded as emotional opposites, i.e. social defeat and sexual behavior, were compared. Similar corticosterone responses were observed in animals confronted for the first time with either a highly aggressive male intruder or a receptive female, but a decrease was noticed in defeated rats tested during a third interaction. Only if animals are being physically attacked does the corticosterone response remain similar to the one observed during sexual behavior. In addition, the number of activated cells in the parvocellular hypothalamic paraventricular nucleus, as visualized by c-Fos immunocytochemistry, shows no difference between rats 1h after the third exposure to defeat or sex. Finally, biotelemetric recordings of heart rate, body temperature and locomotor activity show a robust response to both social stimuli that is generally, however, higher in animals being confronted with a receptive female. The data clearly indicate that acute plasma corticosterone levels are not reflecting the emotional valence of a salient stimulus. The magnitude of the response seems to be a direct reflection of the behavioral activity and hence of the metabolic requirements of activated tissues. Next to its direct metabolic role, acute increases in plasma corticosterone will have neurobiological and behavioral effects that largely depend on the neural circuitry that is activated by the stimulus that triggered its release.
    [Abstract] [Full Text] [Related] [New Search]