These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool.
    Author: Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO.
    Journal: Magn Reson Med; 2012 Aug; 68(2):571-9. PubMed ID: 22213169.
    Abstract:
    Free-breathing three-dimensional whole-heart coronary MRI is a noninvasive alternative to X-ray coronary angiography. However, the existing navigator-gated approaches do not meet the requirements of clinical practice, as they perform with suboptimal accuracy and require prolonged acquisition times. Self-navigated techniques, applied to bright-blood imaging sequences, promise to detect the position of the blood pool directly in the readouts acquired for imaging. Hence, the respiratory displacement of the heart can be calculated and used for motion correction with high accuracy and 100% scan efficiency. However, additional bright signal from the chest wall, spine, arms, and liver can render the isolation of the blood pool impossible. In this work, an innovative method based on a targeted combination of the output signals of an anterior phased-array surface coil is implemented to efficiently suppress such additional bright signal. Furthermore, an algorithm for the automatic segmentation of the blood pool is proposed. Robust self-navigation is achieved by cross-correlation. These improvements were integrated into a three-dimensional radial whole-heart coronary MRI sequence and were compared with navigator-gated imaging in vivo. Self-navigation was successful in all cases and the acquisition time was reduced up to 63%. Equivalent or slightly superior image quality, vessel length, and sharpness were achieved.
    [Abstract] [Full Text] [Related] [New Search]