These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance.
    Author: Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q.
    Journal: Plant Cell; 2012 Jan; 24(1):233-44. PubMed ID: 22214659.
    Abstract:
    Plants modify their growth and development to protect themselves from detrimental conditions by triggering a variety of signaling pathways, including the activation of the ubiquitin-mediated protein degradation pathway. Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important aspect of the ubiquitin-proteasome system, but only a few of the active ERAD components have been reported in plants. Here, we report that the Arabidopsis thaliana ubiquitin-conjugating enzyme, UBC32, a stress-induced functional ubiquitin conjugation enzyme (E2) localized to the ER membrane, connects the ERAD process and brassinosteroid (BR)-mediated growth promotion and salt stress tolerance. In vivo data showed that UBC32 was a functional ERAD component that affected the stability of a known ERAD substrate, the barley (Hordeum vulgare) powdery mildew O (MLO) mutant MLO-12. UBC32 mutation caused the accumulation of bri1-5 and bri1-9, the mutant forms of the BR receptor, BRI1, and these mutant forms subsequently activated BR signal transduction. Further genetic and physiological data supported the contention that UBC32 plays a role in the BR-mediated salt stress response and that BR signaling is necessary for the plant to tolerate salt. Our data indicates a possible mechanism by which an ERAD component regulates the growth and stress response of plants.
    [Abstract] [Full Text] [Related] [New Search]