These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca²⁺/calmodulin-dependent protein kinase II mediates platelet-derived growth factor-induced human hepatic stellate cell proliferation.
    Author: Ping A, Yihao T, Jingxing D, Minkai C, Hesheng L.
    Journal: Dig Dis Sci; 2012 Apr; 57(4):935-42. PubMed ID: 22215519.
    Abstract:
    BACKGROUND AND AIM: Proliferation and activation of myofibroblastic hepatic stellate cells (HSCs) in response to growth factors is essential for the development of liver fibrosis. As one of the most potent factors, platelet-derived growth factor (PDGF) activates intracellular signals and contributes to sustained HSCs activation. Growing evidence has suggested that the Ca(2+) signal is involved in PDGF pathways. We showed previously for the first time that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is essential for human HSC proliferation. The inhibition of CaMKII by its specific inhibitor, KN-93, significantly decreased the HSC growth and increased expression of cell cycle suppressive regulators P53 and P21. METHODS: In the present study, we investigated the role of CaMKII in PDGF-induced HSC proliferation and underlying mechanisms. RESULTS: We confirmed that in human HSCs, PDGF significantly increased CaMKII mRNA levels, protein expression, and phosphorylation. The interruption of CaMKII by KN-93, specific inhibitory peptide (AIP), or specific CaMKII knockdown by its siRNA not only attenuated PDGF-induced HSC proliferation but also ERK1/2 phosphorylation. However, CaMKII had no effect on JNK phosphorylation. In addition, inhibitors of ERK1/2 (PD98059) and JNK (SP600125) did not affect CaMKII expression. Interruption of CaMKII-ERK cascade, not JNK signal, inhibited PDGF-induced HSC proliferation. CONCLUSION: We confirmed that CaMKII mediated PDGF-induced human HSC proliferation through ERK1/2 but not the JNK mechanism. Our study shed light on CaMKII as a crucial signal in PDGF-activated HSCs and a potential therapeutic point in hepatic fibrosis.
    [Abstract] [Full Text] [Related] [New Search]