These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrocardiogram-based sleep spectrogram measures of sleep stability and glucose disposal in sleep disordered breathing. Author: Pogach MS, Punjabi NM, Thomas N, Thomas RJ. Journal: Sleep; 2012 Jan 01; 35(1):139-48. PubMed ID: 22215928. Abstract: STUDY OBJECTIVES: Sleep disordered breathing (SDB) is independently associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Experimental sleep fragmentation has been shown to impair insulin sensitivity. Conventional electroencephalogram (EEG)-based sleep-quality measures have been inconsistently associated with indices of glucose metabolism. This analysis explored associations between glucose metabolism and an EEG-independent measure of sleep quality, the sleep spectrogram, which maps coupled oscillations of heart-rate variability and electrocardiogram (ECG)-derived respiration. The method allows improved characterization of the quality of stage 2 non-rapid eye movement (NREM) sleep. DESIGN: Cross-sectional study. SETTING: N/A. PARTICIPANTS: Nondiabetic subjects with and without SDB (n = 118) underwent the frequently sampled intravenous glucose tolerance test (FSIVGTT) and a full-montage polysomnogram. The sleep spectrogram was generated from ECG collected during polysomnography. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Standard polysomnographic stages (stages 1, 2, 3+4, and rapid eye movement [REM]) were not associated with the disposition index (D(I)) derived from the FSIVGTT. In contrast, spectrographic high-frequency coupling (a marker of stable or "effective" sleep) duration was associated with increased, and very-low-frequency coupling (a marker of wake/REM/transitions) associated with reduced D(I). This relationship was noted after adjusting for age, sex, body mass index, slow wave sleep, total sleep time, stage 1, the arousal index, and the apnea-hypopnea index. CONCLUSIONS: ECG-derived sleep-spectrogram measures of sleep quality are associated with alterations in glucose-insulin homeostasis. This alternate mode of estimating sleep quality could improve our understanding of sleep and sleep-breathing effects on glucose metabolism.[Abstract] [Full Text] [Related] [New Search]