These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adrenergic influence on progesterone metabolism and cyclicity in the rat ovary: autotransplantation and chemical sympathectomy.
    Author: Meyer SG.
    Journal: J Steroid Biochem Mol Biol; 1992 Dec; 43(8):885-94. PubMed ID: 22217833.
    Abstract:
    Elimination of adrenergic nerve endings by chemical sympathectomy with 6-hydroxydopamine of normally cycling rats produced no differences in the weights of body, uterus, ovaries or adrenals, but suppressed significantly proestrus/estrus stages. Unilateral fully denervated (autotransplanted) ovaries showed the following changes in [¹⁴C]progesterone metabolism: the formation of 20α-hydroxy-4-pregnen-3-one increased, whereas 5α-pregnane-3α,20α- and 3ß,20α-diol, 3α- and 3ß-hydroxy-5α-pregnan-20-one, 20α-hydroxy-5α-pregnan-3-one, an unidentified metabolite Y and a group of hydrophobic metabolites decreased dramatically. Enzyme activities could not be restored with epinephrine. Sympathectomy changed the spectrum of [¹⁴C] progesterone metabolites in the same direction, but only at diestrus and metestrus. Autotransplantation suppressed 5α-reductase, 3α- and 3ß-hydroxysteroid dehydrogenase activities (-HSD) measured by the sum of all 5α-, 3α, and 3ß-metabolites, respectively. Sympathectomy suppressed significantly 5α-reductase and 3α-HSD at metestrus. 20α-HSD was not changed in any experiment. These studies provide evidence that 5α-reductase depends on adrenergic input in ovaries of rats at metestrus, a stage of nadir of gonadotropins. During the estrous cycle 5α-reductase may be a regulatory enzyme for progesterone metabolism and also influence estradiol biosynthesis.
    [Abstract] [Full Text] [Related] [New Search]