These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of fluoride, lesion baseline severity and mineral distribution on lesion progression.
    Author: Lippert F, Butler A, Lynch RJ, Hara AT.
    Journal: Caries Res; 2012; 46(1):23-30. PubMed ID: 22222714.
    Abstract:
    The present study investigated the effects of fluoride (F) concentration, lesion baseline severity (ΔZ(base)) and mineral distribution on lesion progression. Artificial caries lesions were created using three protocols [methylcellulose acid gel (MeC), hydroxyethylcellulose acid gel (HEC), carboxymethylcellulose acid solution (CMC)] and with low and high ΔZ(base) groups by varying demineralization times within protocols. Subsequently, lesions were immersed in a demineralizing solution for 24 h in the presence of 0, 1, 2 or 5 ppm F. Changes in mineral distribution characteristics of caries lesions were studied using transverse microradiography. At baseline, the protocols yielded lesions with three distinctly different mineral distributions. Secondary demineralization revealed differences in F response between and within lesion types. In general, lowΔZ lesions were more responsive to F than highΔZ lesions. LowΔZ MeC lesions showed the greatest range of response among all lesions, whereas highΔZ HEC lesions were almost unaffected by F. Laminations were observed in the presence of F in all but highΔZ HEC and CMC lesions. Changes in mineral distribution effected by F were most pronounced in MeC lesions, with remineralization/mineral redeposition in the original lesion body at the expense of sound enamel beyond the original lesion in a dose-response manner. Both ΔZ(base) and lesion mineral distribution directly impact the F response and the extent of secondary demineralization of caries lesions. Further studies - in situ and on natural white spot lesions - are required to better mimic in vivo caries under laboratory conditions.
    [Abstract] [Full Text] [Related] [New Search]