These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vacuolar H(+)-ATPase plays a key role in cell wall biosynthesis of Aspergillus niger.
    Author: Schachtschabel D, Arentshorst M, Lagendijk EL, Ram AF.
    Journal: Fungal Genet Biol; 2012 Apr; 49(4):284-93. PubMed ID: 22222772.
    Abstract:
    The identification of suitable targets is crucial for the discovery and development of new antifungals. Since the fungal cell wall is an essential organelle, the identification of genes involved in cell wall biosynthesis is expected to help discover new antifungal targets. From our previously obtained collection of cell wall mutants with a constitutively active cell wall stress response pathway, we selected a thermosensitive, osmotic-remediable mutant with decreased resistance to SDS for complementation analysis. The phenotypes of this mutant were complemented by a gene encoding a protein with high sequence similarity to subunit d of the eukaryotic Vacuolar-H(+)-ATPase (VmaD). Genetic analysis of this thermosensitive mutant revealed that the conditional mutant allele encodes a protein that lacks 12 amino acids at the C-terminus due to a point mutation that introduces a stop codon. Deletion of the entire gene resulted in very poor growth. The conditional mutant displayed several phenotypes that are typical for V-ATPase mutants, including increased sensitivity to zinc ions and reduced acidification of the vacuole as observed by quinacrine staining. Treatment of Aspergillus niger with the V-ATPase inhibitor bafilomycinB(1) induced the expression of agsA and other cell wall related genes. Furthermore genes involved in cell wall reassembly like fksA, agsA and phiA were clearly up-regulated in the conditional mutant. Our results indicate that the ATP-driven transport of protons and acidification of the vacuole is crucial for the strength of the fungal cell wall and that reduced activity of the V-ATPase induces the cell wall stress response pathway.
    [Abstract] [Full Text] [Related] [New Search]