These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of non-stoichiometric hydration and the dehydration behavior of sitafloxacin hydrate. Author: Suzuki T, Araki T, Kitaoka H, Terada K. Journal: Chem Pharm Bull (Tokyo); 2012; 60(1):45-55. PubMed ID: 22223374. Abstract: Sitafloxacin (STFX) hydrate is a non-stoichiometric hydrate. The hydration state of STFX hydrate varies non-stoichiometrically depending on the relative humidity and temperature, though X-ray powder diffraction (XRPD) of STFX hydrate was not affected by storing at low and high relative humidities. The detailed properties of crystalline water of STFX hydrate were estimated in terms of hygroscopicity, thermal analysis combined with X-ray powder diffractometry, crystallography and density functional theory (DFT) calculation. STFX hydrate changed the water contents continuously and reversibly from an equivalent amount of dihydrate through that of sesquihydrate depending on the relative humidity at 25°C. Thermal analysis and X-ray powder diffraction (XRPD) simultaneous measurement also revealed that STFX hydrate dehydrated into a hydrated state equivalent to monohydrate by heating up to 100°C, whereas XRPD patterns were slightly affected. This indicated that the crystal structure of STFX hydrate was retained at the dehydration level of monohydrate. Single-crystal X-ray structural analysis showed that two STFX molecules and four water molecule sites were contained in an asymmetric unit. STFX molecules formed a channel structure where water molecules were included. At the partially dehydrated state, at least two of four water molecules were considered to be disordered in occupancy and/or coordinates. Insight into the crystal structure of STFX hydrate stored at low and high relative humidities and geometry of the hydrogen bond were helpful to estimate the origin of non-stoichiometric hydration of STFX hydrate.[Abstract] [Full Text] [Related] [New Search]