These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enantioselective and diastereoselective aspects of the oxidative metabolism of metoprolol.
    Author: Murthy SS, Shetty HU, Nelson WL, Jackson PR, Lennard MS.
    Journal: Biochem Pharmacol; 1990 Oct 01; 40(7):1637-44. PubMed ID: 2222517.
    Abstract:
    Enantio- and diastereoselective aspects of oxidative metabolism of metoprolol (1) were examined in the presence of rat liver and human liver microsomes using a pseudoracemate of 1, made up of equal molar (2R)-1-d0 and (2S)-1-d2, as substrate. Both O-demethylation and alpha-hydroxylation showed only slight enantioselectivity, 2R/2S ratios being 1.18 and 0.93 for these pathways in rat liver microsomes and 1.09 and 0.92 in human liver microsomes. In the presence of the rat liver microsomal fraction, alpha-hydroxylation yielded predominantly the 1'R-hydroxy product, 1'R/1'S ratio greater than 12, regardless of the stereochemistry of the side chain. In humans (extensive metabolizers) administered a single 50 mg oral dose of pseudoracemic metoprolol tartrate, urinary alpha-hydroxymetoprolol (2) accounted for 9.3 +/- 2.4% of the dose, 2R/2S ratio 0.85 +/- 0.14, and the carboxylic acid metabolite 4, accounted for 52.7 +/- 6.8% of the dose, 2R/2S ratio 1.15 +/- 0.09. The data suggested that preferential O-demethylation of the (2R)-enantiomer of 1 could contribute to the 2S greater than 2R plasma ratio of metoprolol enantiomers observed in this population.
    [Abstract] [Full Text] [Related] [New Search]