These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 64Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH2: a heterodimeric targeting vector for positron emission tomography imaging of prostate cancer. Author: Jackson AB, Nanda PK, Rold TL, Sieckman GL, Szczodroski AF, Hoffman TJ, Chen X, Smith CJ. Journal: Nucl Med Biol; 2012 Apr; 39(3):377-87. PubMed ID: 22226021. Abstract: INTRODUCTION: The present study describes the design and development of a new heterodimeric RGD-bombesin (BBN) agonist peptide ligand for dual receptor targeting of the form (64)Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH(2) in which Cu-64=a positron emitting radiometal; NO2A=1,4,7-triazacyclononane-1,4-diacetic acid; Glu=glutamic acid; 6-Ahx=6-aminohexanoic acid; RGD=the amino acid sequence [Arg-Gly-Asp], a nonregulatory peptide that has been used extensively to target α(v)β(3) receptors up-regulated on tumor cells and neovasculature; and BBN(7-14)NH(2)=Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH(2), an agonist analogue of bombesin peptide for specific targeting of the gastrin-releasing peptide receptor (GRPr). METHODS: RGD-Glu-6-Ahx-BBN(7-14)NH(2) was manually coupled with NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid), and the resulting conjugate was labeled with (64)Cu to yield (64)Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH(2). Purification was achieved via reversed-phase high-performance liquid chromatography and characterization confirmed by electrospray ionization-mass spectrometry. RESULTS: Competitive displacement binding assays displayed single-digit nanomolar IC(50) values showing very high binding affinities toward the GRPr for the new heterodimeric peptide analogues. In vivo biodistribution studies showed high uptake and retention of tumor-associated radioactivity in PC-3 tumor-bearing rodent models with little accumulation and retention in nontarget tissues. The radiolabeled conjugate also exhibited rapid urinary excretion and high tumor-to-background ratios. Micro-positron emission tomography (microPET) molecular imaging investigations produced high-quality, high-contrast images in PC-3 tumor-bearing mice 15 h postinjection. CONCLUSIONS: Based on microPET imaging experiments that show high-quality, high-contrast images with virtually no residual gastrointestinal radioactivity, this new heterodimeric RGD-BBN conjugate can be considered as a promising PET tracer candidate for the diagnosis of GRPr-positive tumors in human patients.[Abstract] [Full Text] [Related] [New Search]