These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cerebellar lesions alter performance monitoring on the antisaccade task--an event-related potentials study. Author: Peterburs J, Gajda K, Koch B, Schwarz M, Hoffmann KP, Daum I, Bellebaum C. Journal: Neuropsychologia; 2012 Feb; 50(3):379-89. PubMed ID: 22227094. Abstract: Error processing is associated with distinct event-related potential components (ERPs), i.e. the error-related negativity (ERN) which occurs within approximately 150 ms and is typically more pronounced than the correct-response negativity (CRN), and the error positivity (Pe) emerging from about 200 to 400 ms after an erroneous response. The short latency of the ERN suggests that the internal error monitoring system acts on rapidly available central information such as an efference copy signal rather than slower peripheral feedback. The cerebellum has been linked to an internal forward-model which enables online performance monitoring by predicting the sensory consequences of actions, most probably by making use of efference copies. In the present study it was hypothesized that the cerebellum is involved in the fast evaluation of saccadic response accuracy as reflected by the ERN. Error processing on an antisaccade task was investigated in eight patients with focal vascular lesions to the cerebellum and 22 control subjects using ERPs. While error rates were comparable between groups, saccadic reaction times (SRTs) were enhanced in the patients, and the error-correct difference waveforms showed reduced amplitudes for patients relative to controls in the ERN time window. Notably, this effect was mainly driven by an increased CRN in the patients. In the later Pe time window, the difference signal yielded higher amplitudes in patients compared to controls mainly because of smaller Pe amplitudes on correct trials in patients. The altered ERN/CRN pattern suggests that the cerebellum is critically involved in fast classification of saccadic accuracy. Largely intact performance accuracy together with increased SRTs and the altered Pe pattern may indicate a compensatory mechanism presumably related to slower, more conscious aspects of error processing in the patients.[Abstract] [Full Text] [Related] [New Search]