These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression and function of myelin-associated proteins and their common receptor NgR on oligodendrocyte progenitor cells.
    Author: Huang JY, Wang YX, Gu WL, Fu SL, Li Y, Huang LD, Zhao Z, Hang Q, Zhu HQ, Lu PH.
    Journal: Brain Res; 2012 Feb 09; 1437():1-15. PubMed ID: 22227458.
    Abstract:
    Nogo-A, oligodendrocyte myelin glycoprotein (OMgp) and myelin-associated glycoprotein (MAG) are known as myelin-associated proteins that inhibit axon growth by binding a common receptor, the Nogo66 receptor (NgR). In the CNS, Nogo-A, OMgp and MAG are predominantly expressed by oligodendrocytes. As our previous study revealed that oligodendrocyte progenitor cells (OPCs) did not inhibit neurite outgrowth, it is not clear whether these myelin-associated proteins are expressed in OPCs, and what functions they perform if they are expressed in OPCs. In the present study, with OPCs induced from neural precursor cells (NPCs) derived from rat embryonic spinal cord, and oligodendrocytes differentiated from OPCs, we have observed the expression patterns of Nogo-A, OMgp, MAG and NgR in NPCs, OPCs and oligodendrocytes by immunostaining and western blot assay. We found that Nogo-A could be detected in all tested cells; OMgp could be detected in OPCs and oligodendrocytes, but not in NPCs; MAG was only detected in oligodendrocytes; while NgR could be detected in NPCs and OPCs, but not in oligodendrocytes. These results indicated that the expression pattern of MAG and NgR in OPCs was totally different from that of oligodendrocytes, which might be one of the factors that led to the discrepancy between the two cells in promoting neurite outgrowth. By respectively blocking Nogo-A, OMgp and NgR expressed on OPCs with their corresponding antibodies, we further investigated their roles in the proliferation and differentiation of OPCs, as well as the possible signal pathways involved in. Our results showed that when OPCs were cultured under proliferation condition, blocking Nogo-A, OMgp or NgR did not affect the proliferation of OPCs, but could all significantly prolong their processes. And this effect on OPC processes might involve the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. When OPCs were cultured under differentiation condition (containing tri-iodothyronine, T3), blocking Nogo-A, OMgp or NgR could all inhibit the differentiation of OPCs, and this effect might involve the extracellular signal-regulated kinases1/2 (Erk1/2) signaling pathway. These results suggested that under proliferation environment, the functions of Nogo-A, OMgp and NgR expressed in OPCs might be to control the length of processes, thus maintaining the morphology of OPCs. While in differentiation environment, the functions of Nogo-A, OMgp and NgR expressed in OPCs turned to promote the differentiation of OPCs, thus facilitating the maturation of oligodendrocytes. And NgR, as the common receptor for Nogo-A and OMgp, might be the main molecule that mediated these functions in OPCs.
    [Abstract] [Full Text] [Related] [New Search]