These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fe₃O₄/Au magnetic nanoparticle amplification strategies for ultrasensitive electrochemical immunoassay of alfa-fetoprotein. Author: Gan N, Jin H, Li T, Zheng L. Journal: Int J Nanomedicine; 2011; 6():3259-69. PubMed ID: 22228994. Abstract: BACKGROUND: The purpose of this study was to devise a novel electrochemical immunosensor for ultrasensitive detection of alfa-fetoprotein based on Fe(3)O(4)/Au nanoparticles as a carrier using a multienzyme amplification strategy. METHODS AND RESULTS: Greatly enhanced sensitivity was achieved using bioconjugates containing horseradish peroxidase (HRP) and a secondary antibody (Ab(2)) linked to Fe(3)O(4)/Au nanoparticles (Fe(3)O(4)/Au-HRP-Ab(2)) at a high HRP/Ab(2) ratio. After a sandwich immunoreaction, the Fe(3)O(4)/Au-HRP-Ab(2) captured on the electrode surface produced an amplified electrocatalytic response by reduction of enzymatically oxidized hydroquinone in the presence of hydrogen peroxide. The high content of HRP in the Fe(3)O(4)/Au-HRP-Ab(2) could greatly amplify the electrochemical signal. Under optimal conditions, the reduction current increased with increasing alfa-fetoprotein concentration in the sample, and exhibited a dynamic range of 0.005-10 ng/mL with a detection limit of 3 pg/mL. CONCLUSION: The amplified immunoassay developed in this work shows good precision, acceptable stability, and reproducibility, and can be used for detection of alfa-fetoprotein in real samples, so provides a potential alternative tool for detection of protein in the laboratory. Furthermore, this immunosensor could be regenerated by simply using an external magnetic field.[Abstract] [Full Text] [Related] [New Search]