These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human alveolar macrophage and blood monocyte interleukin-6 production. Author: Kotloff RM, Little J, Elias JA. Journal: Am J Respir Cell Mol Biol; 1990 Nov; 3(5):497-505. PubMed ID: 2223104. Abstract: Interleukin-6 (IL-6) modulates a number of processes relevant to host immunity and inflammation. We investigated the capacity of the human alveolar macrophage to elaborate IL-6 in response to lipopolysaccharide (LPS), recombinant interleukin-1 (rIL-1), and recombinant tumor necrosis factor (rTNF), and compared macrophage IL-6 production to that of blood monocytes and lung fibroblasts. Unstimulated and TNF-stimulated alveolar macrophages and monocytes produced little or no detectable IL-6. In contrast, macrophages and monocytes produced large amounts of IL-6 in response to LPS and monocytes produced lesser but readily detectable amounts in response to rIL-1. Monocytes and alveolar macrophages differed significantly in their capacity to produce IL-6, with macrophages making more IL-6 in response to LPS and less IL-6 in response to rIL-1 than autologous blood monocytes. Monocytes aged in vitro produced little detectable IL-6 in response to LPS or rIL-1, suggesting that differences in cell maturity may account for the diminished capacity of the alveolar macrophage to produce IL-6 in response to IL-1 but not its enhanced capacity to produce IL-6 in response to LPS. Mononuclear phagocytes and lung fibroblasts also differed in their ability to produce IL-6. Lung fibroblasts produced more IL-6 in response to rIL-1 and less IL-6 in response to LPS than monocytes and macrophages. In addition, monocytes and macrophages elaborated electrophoretically identical IL-6 moieties that differed from those produced by lung fibroblasts. These differences could be at least partially attributed to differences in sialylation and/or glycosylation.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]