These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Charge delocalization of 1,4-benzenedicyclometalated ruthenium: a comparison between tris-bidentate and bis-tridentate complexes. Author: Sui LZ, Yang WW, Yao CJ, Xie HY, Zhong YW. Journal: Inorg Chem; 2012 Feb 06; 51(3):1590-8. PubMed ID: 22235897. Abstract: A dimetallic biscyclometalated ruthenium complex, [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) (bpy = 2,2'-bipyridine; dpb = 1,4-di-2-pyridylbenzene), with a tris-bidentate coordination mode has been prepared. The electronic properties of this complex were studied by electrochemical and spectroscopic analysis and DFT/TDDFT calculations on both rac and meso isomers. Complex [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) has a similar 1,4-benzenedicyclometalated ruthenium (Ru-phenyl-Ru) structural component with a previously reported bis-tridentate complex, [(tpy)Ru(tpb)Ru(tpy)](2+) (tpy = 2,2';6',2″-terpyridine; tpb = 1,2,4,5-tetra-2-pyridylbenzene). The charge delocalizations of these complexes across the Ru-phenyl-Ru array were investigated and compared by studying the corresponding one-electron-oxidized species, generated by chemical oxidation or electrochemical electrolysis, with DFT/TDDFT calculations and spectroscopic and EPR analysis. These studies indicate that both [(bpy)(2)Ru(dpb)Ru(bpy)(2)](3+) and [(tpy)Ru(tpb)Ru(tpy)](3+) are fully delocalized systems. However, the coordination mode of the metal component plays an important role in influencing their electronic properties.[Abstract] [Full Text] [Related] [New Search]