These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: VDAC blockage by phosphorothioate oligonucleotides and its implication in apoptosis. Author: Tan W. Journal: Biochim Biophys Acta; 2012 Jun; 1818(6):1555-61. PubMed ID: 22236836. Abstract: Apoptosis is a crucial process that regulates the homeostasis of multicellular organisms. Impaired apoptosis contributes to cancer development, while enhanced apoptosis is detrimental in neurodegenerative diseases. The intrinsic apoptotic pathway is initiated by cytochrome c release from mitochondria. Research published in the recent decade has suggested that cytochrome c release can be influenced by the conducting states of VDAC, the channel in the mitochondrial outer membrane (MOM) responsible for metabolite flux. This review will describe the evidence that VDAC gating or blockage and subsequent changes in MOM permeability influence cytochrome c release and the onset of apoptosis. The blockage of VDAC by G3139, a proapoptotic phosphorothioate oligonucleotide, provides strong evidence for the role of VDAC in the initiation of apoptosis. The proapoptotic activity and VDAC blockage are linked in that both require the PS (phosphorothioate) modification, both are enhanced by an increase in oligonucleotide length, and both are insensitive to the nucleotide sequence. Thus, the mitochondrial outer membrane permeability regulated by VDAC gating may play an important role in mitochondrial function and in the control of apoptosis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.[Abstract] [Full Text] [Related] [New Search]