These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interplay between size, composition, and phase transition of nanocrystalline Cr(3+)-doped BaTiO3 as a path to multiferroism in perovskite-type oxides.
    Author: Ju L, Sabergharesou T, Stamplecoskie KG, Hegde M, Wang T, Combe NA, Wu H, Radovanovic PV.
    Journal: J Am Chem Soc; 2012 Jan 18; 134(2):1136-46. PubMed ID: 22239686.
    Abstract:
    Multiferroics, materials that exhibit coupling between spontaneous magnetic and electric dipole ordering, have significant potential for high-density memory storage and the design of complex multistate memory elements. In this work, we have demonstrated the solvent-controlled synthesis of Cr(3+)-doped BaTiO(3) nanocrystals and investigated the effects of size and doping concentration on their structure and phase transformation using X-ray diffraction and Raman spectroscopy. The magnetic properties of these nanocrystals were studied by magnetic susceptibility, magnetic circular dichroism (MCD), and X-ray magnetic circular dichroism (XMCD) measurements. We observed that a decrease in nanocrystal size and an increase in doping concentration favor the stabilization of the paraelectric cubic phase, although the ferroelectric tetragonal phase is partly retained even in ca. 7 nm nanocrystals having the doping concentration of ca. 5%. The chromium(III) doping was determined to be a dominant factor for destabilization of the tetragonal phase. A combination of magnetic and magneto-optical measurements revealed that nanocrystalline films prepared from as-synthesized paramagnetic Cr(3+)-doped BaTiO(3) nanocrystals exhibit robust ferromagnetic ordering (up to ca. 2 μ(B)/Cr(3+)), similarly to magnetically doped transparent conducting oxides. The observed ferromagnetism increases with decreasing constituent nanocrystal size because of an enhancement in the interfacial defect concentration with increasing surface-to-volume ratio. Element-specific XMCD spectra measured by scanning transmission X-ray microscopy (STXM) confirmed with high spatial resolution that magnetic ordering arises from Cr(3+) dopant exchange interactions. The results of this work suggest an approach to the design and preparation of multiferroic perovskite materials that retain the ferroelectric phase and exhibit long-range magnetic ordering by using doped colloidal nanocrystals with optimized composition and size as functional building blocks.
    [Abstract] [Full Text] [Related] [New Search]