These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of combination anthelmintic formulations in the sustainable control of sheep nematodes.
    Author: Bartram DJ, Leathwick DM, Taylor MA, Geurden T, Maeder SJ.
    Journal: Vet Parasitol; 2012 May 25; 186(3-4):151-8. PubMed ID: 22245073.
    Abstract:
    Combinations of anthelmintics with a similar spectrum of activity and different mechanisms of action and resistance are widely available in several regions of the world for the control of sheep nematodes. There are two main justifications for the use of such combinations: (1) to enable the effective control of nematodes in the presence of single or multiple drug resistance, and (2) to slow the development of resistance to the component anthelmintic classes. Computer model simulations of sheep nematode populations indicate that the ability of combinations to slow the development of resistance is maximised if certain prerequisite criteria are met, the most important of which appear to concern the opportunity for survival of susceptible nematodes in refugia and the pre-existing levels of resistance to each of the anthelmintics in the combination. Combinations slow the development of a resistant parasite population by reducing the number of resistant genotypes which survive treatment, because multiple alleles conferring resistance to all the component anthelmintic classes must be present in the same parasite for survival. Individuals carrying multiple resistance alleles are rarer than those carrying single resistance alleles. This enhanced efficacy leads to greater dilution of resistant genotypes by the unselected parasites in refugia, thus reducing the proportion of resistant parasites available to reproduce with other resistant adults that have survived treatment. Concerns over the use of anthelmintic combinations include the potential to select for resistance to multiple anthelmintic classes concurrently if there are insufficient parasites in refugia; the potential for shared mechanisms of resistance between chemical classes; and the pre-existing frequency of resistance alleles may be too high on some farms to warrant the introduction of certain combinations. In conclusion, anthelmintic combinations can play an important role in resistance management. However, they are not a panacea and should always be used in accordance with contemporary principles for sustainable anthelmintic use.
    [Abstract] [Full Text] [Related] [New Search]