These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluorine probes for investigating the mechanism of activation of indeno[1,2,3-cd]pyrene to a tumorigenic agent.
    Author: Rice JE, Weyand EH, Burrill C, LaVoie EJ.
    Journal: Carcinogenesis; 1990 Nov; 11(11):1971-4. PubMed ID: 2225328.
    Abstract:
    Indeno[1,2,3-cd]pyrene (IP) is a non-alternant polycyclic aromatic hydrocarbon that has tumor-initiating activity on mouse skin and is carcinogenic in newborn mice and in rat lungs. Previous studies have shown that 8- and 9-hydroxyIP and IP-1,2-diol are major metabolites formed in vivo in mouse skin. 8-HydroxyIP-1,2-diol and 9-hydroxyIP-1,2-diol are also observed as in vivo metabolites of IP. Although 8-hydroxyIP had marginal tumor-initiating activity on mouse skin, IP-1,2-diol and its epoxide precursor, IP-1,2-oxide, had similar tumorigenic activity as IP. In the present study fluorine probes have been employed to investigate the contribution of metabolic activation at the 1,2 and 7-10 positions of IP. At a total initiating dose of 4.0 mumol, 2-fluoroIP induced skin tumors in 76% of the treated animals with an average of 3.9 tumors/mouse. At the same dose, IP induced a 72% incidence of tumor-bearing mice with 2.1 tumors/mouse. In contrast, 8,9-difluoroIP elicited a tumorigenic response in 40% of the treated animals with 0.6 tumors/animal. Five mice from each experimental group were killed at the conclusion of the initiation phase of the bioassay and DNA was isolated from the treated areas of skin. 32P-Postlabeling analysis of the hydrolyzed DNA indicated that IP forms one major detectable DNA adduct that migrates close to the origin. This adduct is absent in mice treated with 8,9-difluoroIP. In contrast, 2-fluoroIP forms one major adduct spot with different retention behavior as compared with the adduct formed from IP. DNA from mice treated topically with IP-1,2-diol and IP-1,2-oxide was subjected to 32P-postlabeling analysis. IP-1,2-diol forms one major DNA adduct spot with mobility similar to that observed for the IP-DNA adduct. IP-1,2-oxide displayed an intense pattern of DNA adducts centered around the location of the IP-DNA adduct. No adducts were detected which had mobility similar to that formed from 2-fluoroIP. These results are consistent with IP undergoing metabolic activation at positions 7-10 either alone or in conjunction with dihydrodiol formation at the 1,2 position.
    [Abstract] [Full Text] [Related] [New Search]