These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of parallel spring-loaded exoskeleton on ankle muscle-tendon dynamics during simulated human hopping. Author: Robertson BD, Sawicki GS. Journal: Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():583-6. PubMed ID: 22254377. Abstract: Robotic assistance for rehabilitation and enhancement of human locomotion has become a major goal of biomedical engineers in recent years. While significant progress to this end has been made in the fields of neural interfacing and control systems, little has been done to examine the effects of mechanical assistance on the biomechanics of underlying muscle-tendon systems. Here, we model the effects of mechanical assistance via a passive spring acting in parallel with the triceps surae-Achilles tendon complex during cyclic hopping in humans. We examine system dynamics over a range of biological muscle activation and exoskeleton spring stiffness. We find that, in most cases, uniform cyclic mechanical power production of the coupled system is achieved. Furthermore, unassisted power production can be reproduced throughout parameter space by trading off decreases in muscle activation with increases in ankle exoskeleton spring stiffness. In addition, we show that as mechanical assistance increases the biological muscle-tendon unit becomes less 'tuned' resulting in higher mechanical power output from active components of muscle despite large reductions in required force output.[Abstract] [Full Text] [Related] [New Search]