These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detailed analysis of the S-RESPDOR solid-state NMR method for inter-nuclear distance measurement between spin-1/2 and quadrupolar nuclei. Author: Lu X, Lafon O, Trébosc J, Amoureux JP. Journal: J Magn Reson; 2012 Feb; 215():34-49. PubMed ID: 22257437. Abstract: We present a detailed analysis of the Symmetry-based Resonance-Echo Saturation-Pulse DOuble-Resonance (S-RESPDOR) method in order to measure the inter-nuclear distances between spin-1/2 and quadrupolar nuclei. This recently introduced sequence employs a symmetry-based recoupling scheme on the observed spin-1/2 channel and a saturation pulse on the quadrupolar channel. This method requires a low radio-frequency (rf) field, is compatible with high MAS frequency and allows a rapid determination of inter-nuclear distances by fitting the experimental signal fraction to an analytical expression. Here, we analyze in detail the influence of the various experimental and spin-interaction parameters on the S-RESPDOR signal fraction and the measured distance. We show that the S-RESPDOR signal fraction only depends on the quadrupole interaction and the inter-nuclear distance. We demonstrate that the required rf-field on the quadrupolar channel is smaller than that required for an adiabatic-passage pulse in REAPDOR-type experiments. The only limitation of the method is the requirement of accurate rotor synchronization between the two parts of the dipolar recoupling sequences. Using S-RESPDOR, we have quantitatively measured a (31)P-(51)V distance of 357 pm in a mono-vanadium-substituted polyoxo-tungstate, K(4)PVW(11)O(40), from the Keggin family and a (13)C-(67)Zn distance of 286 pm in [80%-(67)Zn]zinc [1-(13)C]acetate. These results show that S-RESPDOR can be employed in the challenging cases of quadrupolar nuclei exhibiting a high spin number and either large chemical-shift anisotropy ((51)V) or low gyromagnetic ratio ((67)Zn).[Abstract] [Full Text] [Related] [New Search]