These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hemolymph ion regulation and kinetic characteristics of the gill (Na⁺, K⁺)-ATPase in the hermit crab Clibanarius vittatus (Decapoda, Anomura) acclimated to high salinity.
    Author: Lucena MN, Garçon DP, Mantelatto FL, Pinto MR, McNamara JC, Leone FA.
    Journal: Comp Biochem Physiol B Biochem Mol Biol; 2012 Apr; 161(4):380-91. PubMed ID: 22260788.
    Abstract:
    We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na(+), K(+))-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45‰ salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 ± 22.1 mOsm kg(-1) H(2)O) at 45‰ but elevated compared to fresh-caught crabs (801.0 ± 40.1 mOsm kg(-1) H(2)O). Hemolymph [Na(+)] (323.0 ± 2.5 mmol L(-1)) and [Mg(2+)] (34.6 ± 1.0 mmol L(-1)) are hypo-regulated while [Ca(2+)] (22.5 ± 0.7 mmol L(-1)) is hyper-regulated; [K(+)] is hyper-regulated in fresh-caught crabs (17.4 ± 0.5 mmol L(-1)) but hypo-regulated (6.2 ± 0.7 mmol L(-1)) at 45‰. Protein expression patterns are altered in the 45‰-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na(+), K(+))-ATPase α-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm=46.5 ± 3.5 Umg(-1); K(0.5)=7.07 ± 0.01 μmol L(-1)) and a low-affinity ATP binding site (Vm=108.1 ± 2.5 U mg(-1); K(0.5)=0.11 ± 0.3 mmol L(-1)), both obeying cooperative kinetics, were disclosed. Modulation of (Na(+), K(+))-ATPase activity by Mg(2+), K(+) and NH(4)(+) also exhibits site-site interactions, but modulation by Na(+) shows Michaelis-Menten kinetics. (Na(+), K(+))-ATPase activity is synergistically stimulated up to 45% by NH(4)(+) plus K(+). Enzyme catalytic efficiency for variable [K(+)] and fixed [NH(4)(+)] is 10-fold greater than for variable [NH(4)(+)] and fixed [K(+)]. Ouabain inhibited ≈80% of total ATPase activity (K(I)=464.7 ± 23.2 μmol L(-1)), suggesting that ATPases other than (Na(+), K(+))-ATPase are present. While (Na(+), K(+))-ATPase activities are similar in fresh-caught (around 142 nmol Pi min(-1)mg(-1)) and 45‰-acclimated crabs (around 154 nmol Pi min(-1)mg(-1)), ATP affinity decreases 110-fold and Na(+) and K(+) affinities increase 2-3-fold in 45‰-acclimated crabs.
    [Abstract] [Full Text] [Related] [New Search]