These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of molecularly imprinted polymer films used for detection of profenofos based on a quartz crystal microbalance sensor. Author: Gao N, Dong J, Liu M, Ning B, Cheng C, Guo C, Zhou C, Peng Y, Bai J, Gao Z. Journal: Analyst; 2012 Mar 07; 137(5):1252-8. PubMed ID: 22262283. Abstract: A quartz crystal microbalance (QCM) sensor based on molecularly imprinted ultra-thin films was developed for detecting profenofos in real samples. Films prepared by physical entrapment (MIP-A) and in situ self-assembly (MIP-B) were compared. The results indicated that the best sensing signal was obtained through the in situ self-assembly method. The QCM sensor chip was pretreated with 11-mercaptoundecanoic acid (MUA) to form a self-assembled monolayer (SAM), and then polymer films were immobilized directly on the SAM using surface-initiated radical polymerization. In this paper, all detection experiments were taken in air. The reaction was processed in solution, and the electrode was washed with deionized water and dried with N(2) before QCM measurement. The film was characterized by a scanning electron microscope (SEM), AC impedance and cyclic voltammetry. Analysis of the QCM response in the presence of different concentrations of profenofos showed a good linear correlation during 1.0 × 10(-8) to 1.0 × 10(-5) mg mL(-1) (y = 5log x + 42.5, R = 0.9960) and 1.0 × 10(-5) to 1.0 × 10(-3) mg mL(-1) (y = 25.86log x + 146, R = 0.9959), respectively. The MIP-QCM sensor was used to detect profenofos in tap water, and showed good recovery and repeatability.[Abstract] [Full Text] [Related] [New Search]