These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The potential utility of methoxypoly(ethylene glycol)-mediated prevention of rhesus blood group antigen RhD recognition in transfusion medicine.
    Author: Wang D, Toyofuku WM, Scott MD.
    Journal: Biomaterials; 2012 Apr; 33(10):3002-12. PubMed ID: 22264524.
    Abstract:
    Red blood cell (RBC) transfusions are an important clinical intervention. However, RBC express hundreds of non-ABO antigens making alloimmunization a significant risk. RhD expression is the most immunologically important non-ABO antigen. Availability of RhD(-) blood, often problematic in North America and Europe, is a significant issue in Asia and Africa where RhD(-) blood is uncommon (<0.5% of supply). The immunocamouflage of RhD is readily accomplished by the covalent grafting of methoxypoly(ethylene glycol) [mPEG] to the RBC membrane. To determine if RhD immunocamouflage would inhibit its immunologic recognition, an in vitro RhD-sensitized antigen presentation assay using PBMC and dendritic cells (DC) from RhD-sensitized women was used. The immunological effects of polymer grafting to an immunodominant RhD peptide, purified RhD protein and intact RhD(+) RBC were examined via T cell proliferation and cytokine release assays. At Day 11, PEGylation significantly attenuated T cell proliferation arising from RhD peptide (~80 → 5%), protein (36 → 0.2%) and intact RBC (33 → 1.4%). Cytokine secretion was similarly blunted following PEGylation of the purified protein or intact RBC. These data support the immunomodulatory effects of PEGylation and the potential utility of this technology in transfusion medicine - especially in situations where RhD(-) blood is rare or in short supply.
    [Abstract] [Full Text] [Related] [New Search]