These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise.
    Author: Cleland SM, Murias JM, Kowalchuk JM, Paterson DH.
    Journal: Appl Physiol Nutr Metab; 2012 Feb; 37(1):138-48. PubMed ID: 22269026.
    Abstract:
    This study examined the effects of prior heavy-intensity exercise on the adjustment of pulmonary oxygen uptake (VO(2p)) and muscle deoxygenation Δ[HHb] during the transition to subsequent heavy-intensity cycling (CE) or knee-extension (KE) exercise. Nine young adults (aged 24 ± 5 years) performed 4 repetitions of repeated bouts of heavy-intensity exercise separated by light-intensity CE and KE, which included 6 min of baseline exercise, a 6-min step of heavy-intensity exercise (H1), 6-min recovery, and a 6-min step of heavy-intensity exercise (H2). Exercise was performed at 50 r·min(-1) or contractions per minute per leg. Oxygen uptake (VO(2)) mean response time was ∼20% faster (p < 0.05) during H2 compared with H1 in both modalities. Phase 2 time constants (τ) were not different between heavy bouts of CE (H1, 29.6 ± 6.5 s; H2, 28.0 ± 4.6 s) or KE exercise (H1, 31.6 ± 6.7 s; H2, 29.8 ± 5.6 s). The VO(2) slow component amplitude was lower (p < 0.05) in H2 in both modalities (CE, 0.19 ± 0.06 L·min(-1); KE, 0.12 ± 0.07 L·min(-1)) compared with H1 (CE, 0.29 ± 0.09 L·min(-1); KE, 0.18 ± 0.07 L·min(-1)), with the contribution of the slow component to the total VO(2) response reduced (p < 0.05) in H2 during both exercise modes. The effective τHHb was similar between bouts for CE (H1, 18.2 ± 3.0 s; H2, 18.0 ± 3.6 s) and KE exercise (H1, 26.0 ± 7.0 s; H2, 24.0 ± 5.8 s). The ΔHHb slow component was reduced during H2 in both CE and KE (p < 0.05). In conclusion, phase 2 VO(2p) was unchanged with priming exercise; however, a faster mean response time of VO(2p) during the heavy-intensity exercise preceded by a priming heavy-intensity exercise was attributed to a smaller slow component and reduced muscle deoxygenation indicative of improved muscle O(2) delivery during the second bout of exercise.
    [Abstract] [Full Text] [Related] [New Search]