These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fluorescent detection of hypochlorous acid from turn-on to FRET-based ratiometry by a HOCl-mediated cyclization reaction. Author: Yuan L, Lin W, Xie Y, Chen B, Song J. Journal: Chemistry; 2012 Feb 27; 18(9):2700-6. PubMed ID: 22271383. Abstract: Hypochlorous acid (HOCl), a reactive oxygen species (ROS), plays a significant biological role in living systems. However, abnormal levels of HOCl are implicated in many inflammation-associated diseases. Therefore, the detection of HOCl is of great importance. In this work, we describe the HOCl-promoted cyclization of rhodamine-thiosemicarbazides to rhodamine-oxadiazoles, which is then exploited as a novel design strategy for the development of a new fluorescence turn-on HOCl probe 2. On the basis of the fluorescence resonance energy transfer (FRET) signaling mechanism, 2 was further converted into 1a and 1b, which represent the first paradigm of FRET-based ratiometric fluorescent HOCl probes. The outstanding features of 1a and 1b include well-resolved emission peaks, high sensitivity, high selectivity, good functionality at physiological pH, rapid response, low cytotoxicity, and good cell-membrane permeability. Furthermore, these excellent attributes enable us to demonstrate, for the first time, the ratiometric imaging of endogenously produced HOCl in living cells by using these novel ratiometric probes. We expect that 1a and 1b will be useful molecular tools for studies of HOCl biology. In addition, the HOCl-promoted cyclization reaction of rhodamine-thiosemicarbazides to rhodamine-oxadiazoles should be widely applicable for the development of different types of fluorescent HOCl probes.[Abstract] [Full Text] [Related] [New Search]