These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lensless digital holography with diffuse illumination through a pseudo-random phase mask. Author: Bernet S, Harm W, Jesacher A, Ritsch-Marte M. Journal: Opt Express; 2011 Dec 05; 19(25):25113-24. PubMed ID: 22273902. Abstract: Microscopic imaging with a setup consisting of a pseudo-random phase mask, and an open CMOS camera, without an imaging objective, is demonstrated. The pseudo random phase mask acts as a diffuser for an incoming laser beam, scattering a speckle pattern to a CMOS chip, which is recorded once as a reference. A sample which is afterwards inserted somewhere in the optical beam path changes the speckle pattern. A single (non-iterative) image processing step, comparing the modified speckle pattern with the previously recorded one, generates a sharp image of the sample. After a first calibration the method works in real-time and allows quantitative imaging of complex (amplitude and phase) samples in an extended three-dimensional volume. Since no lenses are used, the method is free from lens abberations. Compared to standard inline holography the diffuse sample illumination improves the axial sectioning capability by increasing the effective numerical aperture in the illumination path, and it suppresses the undesired so-called twin images. For demonstration, a high resolution spatial light modulator (SLM) is programmed to act as the pseudo-random phase mask. We show experimental results, imaging microscopic biological samples, e.g. insects, within an extended volume at a distance of 15 cm with a transverse and longitudinal resolution of about 60 μm and 400 μm, respectively.[Abstract] [Full Text] [Related] [New Search]