These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic relationships among wild and cultivated accessions of curry leaf plant (Murraya koenigii (L.) Spreng.), as revealed by DNA fingerprinting methods.
    Author: Verma S, Rana TS.
    Journal: Mol Biotechnol; 2013 Feb; 53(2):139-49. PubMed ID: 22274940.
    Abstract:
    Murraya koenigii (L.) Spreng. (Rutaceae), is an aromatic plant and much valued for its flavor, nutritive and medicinal properties. In this study, three DNA fingerprinting methods viz., random amplification of polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD), and inter-simple sequence repeat (ISSR), were used to unravel the genetic variability and relationships across 92 wild and cultivated M. koenigii accessions. A total of 310, 102, and 184, DNA fragments were amplified using 20 RAPD, 5 DAMD, and 13 ISSR primers, revealing 95.80, 96.07, and 96.73% polymorphism, respectively, across all accessions. The average polymorphic information content value obtained with RAPD, DAMD, and ISSR markers was 0.244, 0.250, and 0.281, respectively. The UPGMA tree, based on Jaccard's similarity coefficient generated from the cumulative (RAPD, DAMD, and ISSR) band data showed two distinct clusters, clearly separating wild and cultivated accessions in the dendrogram. Percentage polymorphism, gene diversity (H), and Shannon information index (I) estimates were higher in cultivated accessions compared to wild accessions. The overall high level of polymorphism and varied range of genetic distances revealed a wide genetic base in M. koenigii accessions. The study suggests that RAPD, DAMD, and ISSR markers are highly useful to unravel the genetic variability in wild and cultivated accessions of M. koenigii.
    [Abstract] [Full Text] [Related] [New Search]