These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Backbone resonance assignments for G protein α(i3) subunit in the GTP-bound state.
    Author: Mase Y, Yokogawa M, Osawa M, Shimada I.
    Journal: Biomol NMR Assign; 2012 Oct; 6(2):217-20. PubMed ID: 22274999.
    Abstract:
    Guanine-nucleotide binding proteins (G proteins) act as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of GDP-bound form of the G protein α subunit (Gα(GDP)) and G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα(GTP)) and Gβγ. Then, Gα(GTP) and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Each family transduces the signaling from different GPCRs to the specific effectors. Here, we established the backbone resonance assignments of human Gα(i3), a member of the i/o family, with a molecular weight of 41 K in complex with a GTP analogue, GTPγS.
    [Abstract] [Full Text] [Related] [New Search]