These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spring uses in exoskeleton actuation design.
    Author: Wang S, van Dijk W, van der Kooij H.
    Journal: IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669.
    Abstract:
    An exoskeleton has to be lightweight, compliant, yet powerful to fulfill the demanding task of walking. This imposes a great challenge for the actuator design. Electric motors, by far the most common actuator in robotic, orthotic, and prosthetic devices, cannot provide sufficiently high peak and average power and force/torque output, and they normally require high-ratio, heavy reducer to produce the speeds and high torques needed for human locomotion. Studies on the human muscle-tendon system have shown that muscles (including tendons and ligaments) function as a spring, and by storing energy and releasing it at a proper moment, locomotion becomes more energy efficient. Inspired by the muscle behavior, we propose a novel actuation strategy for exoskeleton design. In this paper, the collected gait data are analyzed to identify the spring property of the human muscle-tendon system. Theoretical optimization results show that adding parallel springs can reduce the peak torque by 66%, 53%, and 48% for hip flexion/extension (F/E), hip abduction/adduction (A/A), and ankle dorsi/plantar flexion (D/PF), respectively, and the rms power by 50%, 45%, and 61%, respectively. Adding a series spring (forming a Series Elastic Actuator, SEA) reduces the peak power by 79% for ankle D/PF, and by 60% for hip A/A. A SEA does not reduce the peak power demand at other joints. The optimization approach can be used for designing other wearable robots as well.
    [Abstract] [Full Text] [Related] [New Search]