These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(ε-caprolactone) polymer for bone tissue regeneration. Author: Lei B, Shin KH, Noh DY, Koh YH, Choi WY, Kim HE. Journal: J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):967-75. PubMed ID: 22279025. Abstract: This study examined the utility of sol-gel-derived bioactive glass microspheres (BGMs) as a reinforcement to improve the mechanical properties and biological performance of poly(ε-caprolactone) (PCL) polymer. All of the PCL-BGMs composites produced, with a variety of BGMs contents (10, 20, and 30 wt %), showed a uniform distribution of the BGMs in the PCL matrix, particularly owing to their spherical shape and small size. This led to a considerable increase in the elastic modulus from 93 ± 12 MPa to 635 ± 179 MPa with increasing BGMs content from 0 to 30 wt %. Furthermore, the addition of the BGMs to the PCL polymer significantly increased the hydrophilicity of the PCL-BGMs composites, which led to a higher water absorption and degradation rate. The PCL-BGMs composite with a BGMs content of 30 wt % showed vigorous growth of apatite crystals with a high aspect ratio on its surface after soaking in the simulated body fluid for 7 days, resulting in the creation of a porous carbonate hydroxyapatite layer.[Abstract] [Full Text] [Related] [New Search]