These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Degradation effect and mechanism of 2,4-DNT by reduction-ZPF catalytic oxidation].
    Author: Zhang JB, Xi BD, Jiang YH, Li DL, Deng F, Ma ZF, Wang YF.
    Journal: Huan Jing Ke Xue; 2011 Oct; 32(10):2937-42. PubMed ID: 22279905.
    Abstract:
    ZPF(zeoliteartificial pillared by alpha-FeOOH) which prepared in the laboratory and characterized by FTIR and XRD was used as catalyst, and was tested for its activity in catalytic H2O2, of 2,4-DNT, which is persistent and difficult to be degraded in groundwater. The degradation of 2,4-DNT was examined at different pHs in the reduction, catalytic oxidation and combination technology of reduction-catalytic oxidation reaction systems. Moreover, the removal effect of 2,4-DNT was compared by these three approaches and the catalytic oxidation mechanism was analyzed. The results demonstrated that the removal effect of 2,4-DNT reduced to 2,4-DAT was up to 96.6% in 120 min at pH = 5, which was 1.2, 2.0 times of the rate at pH 7, pH 9 respectively. The catalytic effect was various at different pHs and more significant when the pH close to the zero point of charge of alpha-FeOOH. The order of removal effect of 2,4-DNT at different pHs was pH = 7 > pH = 9 > pH = 5. Compared to single reduction or catalytic oxidation, the removal effect of combination technology was 57.4%, which was evidently improved on the base of 2,4-DNT reduced to 2,4-DAT. The degradation of 2,4-DNT in the presence of ZPF/H2O2 follows a first-order kinetic model and the k(obs) was 0.002 7 min(-1). Due to the concentration of dissolved Fe ion was far less than 0.07 mmol/L, the mechanism was heterogeneous Fenton reaction acting on the surface of the catalyst. Therefore the combination technology was superior to the single treatment of reduction or catalytic oxidation.
    [Abstract] [Full Text] [Related] [New Search]