These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Large-amplitude dynamics in vinyl radical: the role of quantum tunneling as an isomerization mechanism.
    Author: Sharma AR, Bowman JM, Nesbitt DJ.
    Journal: J Chem Phys; 2012 Jan 21; 136(3):034305. PubMed ID: 22280758.
    Abstract:
    We report tunneling splittings associated with the large amplitude 1,2 H-atom migration to the global minima in the vinyl radical. These are obtained using a recent full-dimensional ab initio potential energy surface (PES) [A. R. Sharma, B. J. Braams, S. Carter, B. C. Shepler, and J. M. Bowman, J. Chem. Phys. 130(17), 174301 (2009)] and independently, directly calculated "reaction paths." The PES is a multidimensional fit to coupled cluster single and double and perturbative treatment of triple excitations coupled-cluster single double triple (CCSD(T)) with the augmented correlation consistent triple zeta basis set (aug-cc-pVTZ). The reaction path potentials are obtained from a series of CCSD(T)/aug-cc-pVnTZ calculations extrapolated to the complete basis set limit. Approximate 1D calculations of the tunneling splitting for these 1,2-H atom migrations are obtained using each of these potentials as well as quite different 1D Hamiltonians. The splittings are calculated over a large energy ranges, with results from the two sets of calculations in excellent agreement. Though negligibly slow (>1 s) for the vibrational ground state, this work predicts tunneling-promoted 1,2 hydride shift dynamics in vinyl to exhibit exponential growth with internal vibrational excitation, specifically achieving rates on the sub-μs time scale at energies above E ≈ 7500 cm(-1). Most importantly, these results begin to elucidate the possible role of quantum isomerization through barriers without dissociation, in competition with the more conventional picture of classical roaming permitted over a much narrower window of energies immediately below the bond dissociation limit. Furthermore, when integrated over a Boltzmann distribution of thermal energies, these microcanonical tunneling rates are consistent with sub-μs time scales for 1,2 hydride shift dynamics at T > 1400 K. These results have potential relevance for combustion modeling of low-pressure flames, as well as recent observations of nuclear spin statistical mixing from high-resolution IR/microwave spectroscopy on vinyl radical.
    [Abstract] [Full Text] [Related] [New Search]