These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Progressive membrane phospholipid changes in first episode schizophrenia with high field magnetic resonance spectroscopy.
    Author: Miller J, Drost DJ, Jensen E, Manchanda R, Northcott S, Neufeld RW, Menon R, Rajakumar N, Pavlosky W, Densmore M, Schaefer B, Williamson P.
    Journal: Psychiatry Res; 2012 Jan 30; 201(1):25-33. PubMed ID: 22284150.
    Abstract:
    Patients with a first episode of schizophrenia generally have increased phospholipid membrane breakdown products within the brain, while findings in chronic patients have been inconsistent. In this study we examine progressive changes in phosphorus membrane metabolites in the same patient group through the early years of schizophrenia in brain regions associated with the disease. Sixteen never-treated and medicated first episode schizophrenic patients were assessed at 10 months and 52 months after diagnosis. Sixteen matched volunteers were assessed at baseline and after 35 months. Phospholipid membrane metabolism was assessed with phosphorous magnetic resonance spectroscopy in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex, parieto-occipital cortex, superior temporal gyrus and temporal pole. At 10 months, glycerophosphocholine was increased in the anterior cingulate in patients as compared to controls. Glycerophosphocholine was decreased in the anterior cingulate and increased in the posterior cingulate and left superior temporal gyrus; glycerophosphoethanolamine was decreased in the left thalamus and increased in the left hippocampus within patients over time. At 52 months, compared to controls phosphocholine was increased in the left thalamus and glycerophosphoethanolamine was increased in the left hippocampus. These results imply a gradual inclusion of brain regions in schizophrenia where an initial increase, followed by a decrease in phospholipid membrane metabolites was observed. This pattern, observed in the early years of schizophrenia, is consistent with excitotoxic neural membrane breakdown in these regions.
    [Abstract] [Full Text] [Related] [New Search]