These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Blood/air distribution of volatile organic compounds (VOCs) in a nationally representative sample.
    Author: Jia C, Yu X, Masiak W.
    Journal: Sci Total Environ; 2012 Mar 01; 419():225-32. PubMed ID: 22285084.
    Abstract:
    Volatile organic compounds (VOCs) in human blood are an effective biomarker of environmental exposure and are closely linked to health outcomes. Unlike VOC concentrations in air, which are routinely collected, blood VOC data are not as readily available. This study aims to develop the quantitative relationship between air and blood VOCs by deriving population-based blood/air distribution coefficients (popKs) of ten common VOCs in the general U.S. population. Air and human blood samples were collected from 364 adults aged 20-59 years in 1999-2000 National Health and Nutrition Examination Survey (NHANES). Determinants of popKs were identified using weighted multivariate regression models. In the non-smoking population, median popKs ranged from 3.1 to 77.3, comparable to values obtained in the laboratory. PopKs decreased with increasing airborne VOC concentrations. Smoking elevated popKs by 1.5-3.5 times for aromatic compounds, but did not affect the popKs for methyl tert-butyl ether (MTBE) or chlorinated compounds. Drinking water concentration was a modifier of MTBE's popK. Age, gender, body composition, nor ethnicity affected popKs. PopKs were predictable using linear models with air concentration as the independent variable for both adults and children. This is the first study to estimate blood/air distribution coefficients using simultaneous environmental and biological monitoring on a national population sample. This study was also the first to determine the blood/air distribution coefficient of p-dichlorobenzene, a compound frequently found in indoor environments. These results have applications in exposure assessment, pharmacokinetic analysis, physiologically-based pharmacokinetic (PBPK) modeling, and uncertainty analysis.
    [Abstract] [Full Text] [Related] [New Search]