These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lipid metabolism in cultured cells. XVIII. Comparative uptake of low density and high density lipoproteins by normal, hypercholesterolemic and tumor virus-transformed human fibroblasts.
    Author: Wu JD, Butler J, Bailey JM.
    Journal: J Lipid Res; 1979 May; 20(4):472-80. PubMed ID: 222855.
    Abstract:
    Serum lipoproteins control cell cholesterol content by regulating its uptake, biosynthesis, and excretion. Monolayers of cultured fibroblasts were used to study interactions with human high density (HDL) and low density (LDL) lipoproteins doubly labeled with [(3)H]cholesterol and (125)I in the apoprotein moiety. In the binding assay for LDL, the absence of specific LDL receptors in type II hypercholesterolemic fibroblasts was confirmed, whereas monolayers of virus-transformed human lung fibroblasts (VA-4) exhibited LDL binding characteristics essentially the same as normal lung fibroblasts. In the studies of HDL binding, specific HDL binding sites were demonstrated in normal and virus-transformed fibroblasts. In addition, type II hypercholesterolemic cells, despite the loss of LDL receptors, retained normal HDL binding sites. No significant competition was displayed between the two lipoprotein classes for their respective binding sites over a 5-fold concentration range. In VA-4 cells, the amount of lipoprotein required to saturate half the receptor sites was 3.5 micro g/ml (9 x 10(-9) M) for LDL and 9.1 micro g/ml (9 x 10(-8) M) for HDL. Pronase treatment reduced LDL binding by more than half but had no effect on HDL binding. Chloroquine, a lysomal enzyme inhibitor, stimulated net LDL uptake 3.5-fold by increasing internalized LDL but had essentially no effect on HDL uptake. Further experiments were conducted using doubly labeled lipoproteins to characterize the interaction of LDL and HDL with cells. While the cholesterol and protein moieties of LDL were incorporated into cells at similar rates, the uptake of the cholesterol moiety of HDL was 5 to 10 times more rapid than that of the protein component. Furthermore, the apoprotein component of LDL is extensively degraded following exposure, whereas the apoprotein moiety of HDL retains its macromolecular chromatographic characteristics. These results indicate that HDL and LDL bind to cultured cells at separate sites and that further processing of the two lipoprotein classes appears to take place by fundamentally different mechanisms.-Wu, J-D., J. Butler, and J. M. Bailey. Lipid metabolism in cultured cells XVIII. Comparative uptake of low density and high density lipoproteins by normal, hypercholesterolemic, and tumor virus-transformed human fibroblasts.
    [Abstract] [Full Text] [Related] [New Search]