These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fine structural and immunohistochemical detection of collar enamel in the teeth of Polypterus senegalus, an actinopterygian fish. Author: Sasagawa I, Yokosuka H, Ishiyama M, Mikami M, Shimokawa H, Uchida T. Journal: Cell Tissue Res; 2012 Feb; 347(2):369-81. PubMed ID: 22287040. Abstract: This is the first detailed report about the collar enamel of the teeth of Polypterus senegalus. We have examined the fine structure of the collar enamel and enamel organ of Polypterus during amelogenesis by light and transmission electron microscopy. An immunohistochemical analysis with an antibody against bovine amelogenin, an antiserum against porcine amelogenin and region-specific antibodies or antiserum against the C-terminus, middle region and N-terminus of porcine amelogenin has also been performed to examine the collar enamel matrix present in these teeth. Their ameloblasts contain fully developed Golgi apparatus, rough endoplasmic reticulum and secretory granules. During collar enamel formation, an amorphous fine enamel matrix containing no collagen fibrils is found between the dentin and ameloblast layers. In non-demineralized sections, the collar enamel (500 nm to 1 μm thick) is distinguishable from dentin, because of its higher density and differences in the arrangement of its crystals. The fine structural features of collar enamel in Polypterus are similar to those of tooth enamel in Lepisosteus (gars), coelacanths, lungfish and amphibians. The enamel matrix shows intense immunoreactivity to the antibody and antiserum against mammalian amelogenins and to the middleregion- and C-terminal-specific anti-amelogenin antibodies. These findings suggest that the proteins in the enamel of Polypterus contain domains that closely resemble those of bovine and porcine amelogenins. The enamel matrix, which exhibits positive immunoreactivity to mammalian amelogenins, extends to the cap enameloid surface, implying that amelogenin-like proteins are secreted by ameloblasts as a thin matrix layer that covers the cap enameloid after enameloid maturation.[Abstract] [Full Text] [Related] [New Search]