These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fluctuation in timing of upper airway and chest wall inspiratory muscle activity in obstructive sleep apnea. Author: Hudgel DW, Harasick T. Journal: J Appl Physiol (1985); 1990 Aug; 69(2):443-50. PubMed ID: 2228853. Abstract: An imbalance in the amplitude of electrical activity of the upper airway and chest wall inspiratory muscles is associated with both collapse and reopening of the upper airway in obstructive sleep apnea (OSA). The purpose of this study was to examine whether timing of the phasic activity of these inspiratory muscles also was associated with changes in upper airway caliber in OSA. We hypothesized that activation of upper airway muscle phasic electrical activity before activation of the chest wall pump muscles would help preserve upper airway patency. In contrast, we anticipated that the reversal of this pattern with delayed activation of upper airway inspiratory muscles would be associated with upper airway narrowing or collapse. Therefore the timing and amplitude of midline transmandibular and costal margin moving time average (MTA) electromyogram (EMG) signals were analyzed from 58 apnea cycles in stage 2 sleep in six OSA patients. In 86% of the postapnea breaths analyzed the upper airway MTA peak activity preceded the chest wall peak activity. In 86% of the obstructed respiratory efforts the upper airway MTA peak activity followed the chest wall peak activity. The onset of phasic electrical activity followed this same pattern. During inspiratory efforts when phasic inspiratory EMG amplitude did not change from preapnea to apnea, the timing changes noted above occurred. Even within breaths the relative timing of the upper airway and chest wall electrical activities was closely associated with changes in the pressure-flow relationship. We conclude that the relative timing of inspiratory activity of the upper airway and chest wall inspiratory muscles fluctuates during sleep in OSA.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]