These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modeling the inactivation of Salmonella Typhimurium, Listeria monocytogenes, and Salmonella Enteritidis on poultry products exposed to pulsed UV light.
    Author: Keklik NM, Demirci A, Puri VM, Heinemann PH.
    Journal: J Food Prot; 2012 Feb; 75(2):281-8. PubMed ID: 22289588.
    Abstract:
    Pulsed UV light inactivation of Salmonella Typhimurium on unpackaged and vacuum-packaged chicken breast, Listeria monocytogenes on unpackaged and vacuum-packaged chicken frankfurters, and Salmonella Enteritidis on shell eggs was explained by log-linear and Weibull models using inactivation data from previous studies. This study demonstrated that the survival curves of Salmonella Typhimurium and L. monocytogenes were nonlinear exhibiting concavity. The Weibull model was more successful than the log-linear model in estimating the inactivations for all poultry products evaluated, except for Salmonella Enteritidis on shell eggs, for which the survival curve was sigmoidal rather than concave, and the use of the Weibull model resulted in slightly better fit than the log-linear model. The analyses for the goodness of fit and performance of the Weibull model produced root mean square errors of 0.059 to 0.824, percent root mean square errors of 3.105 to 21.182, determination coefficients of 0.747 to 0.989, slopes of 0.842 to 1.042, bias factor values of 0.505 to 1.309, and accuracy factor values of 1.263 to 6.874. Overall, this study suggests that the survival curves of pathogens on poultry products exposed to pulsed UV light are nonlinear and that the Weibull model may generally be a useful tool to describe the inactivation patterns for pathogenic microorganisms affiliated with poultry products.
    [Abstract] [Full Text] [Related] [New Search]