These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of peripheral and spinal 5-HT(3) receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia. Author: Bravo-Hernández M, Cervantes-Durán C, Pineda-Farias JB, Barragán-Iglesias P, López-Sánchez P, Granados-Soto V. Journal: Pharmacol Biochem Behav; 2012 Apr; 101(2):246-57. PubMed ID: 22289689. Abstract: The role of peripheral and spinal 5-HT(3) receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia in both paws. In experiments where the test drug was anticipated to augment or antagonize the response, 0.5 or 1% formalin, respectively, was used for injection. Peripheral ipsilateral, but not contralateral, pre-treatment (-10 min) with serotonin (5-HT, 10-100 nmol/paw) and the selective 5-HT(3) receptor agonist 1-(m-chlorophenyl)-biguanide (m-CPBG, 10-300 nmol/paw) increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. Moreover, spinal pre-treatment with m-CPBG (10-300 nmol/rat) increased 0.5% formalin-induced secondary hyperalgesia but not allodynia in both paws. Accordingly, peripheral ipsilateral (30-300 nmol/paw), but not contralateral (300 nmol/paw), and spinal (10-100 nmol) pre-treatment with the selective 5-HT(3) receptor antagonist ondansetron prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. The peripheral pronociceptive effects of 5-HT (100 nmol/paw) and m-CPBG (300 nmol/paw) as well as the spinal effect of m-CPBG (300 nmol/rat) were completely prevented by the peripheral (10 nmol/paw) and spinal (1 nmol/rat) injection, respectively, of ondansetron. At these doses, ondansetron did not modify per se formalin-induced nociceptive behaviors. Spinal (30-300 nmol/rat), but not peripheral (300 nmol/paw), post-treatment (on day 6) with ondansetron reversed established formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Results suggest that a barrage of afferent input induced by 5-HT at peripheral 5-HT(3) receptors participates in the development of formalin-induced long-term secondary allodynia and hyperalgesia in the rat. In addition, our data suggest that spinal 5-HT(3) receptors play an important role during development and maintenance of these evoked long-term behaviors.[Abstract] [Full Text] [Related] [New Search]