These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. Author: Lee CY, Bagdasarian M, Meng MH, Zeikus JG. Journal: J Biol Chem; 1990 Nov 05; 265(31):19082-90. PubMed ID: 2229064. Abstract: The gene coding for thermophilic xylose (glucose) isomerase of Clostridium thermosulfurogenes was isolated and its complete nucleotide sequence was determined. The structural gene (xylA) for xylose isomerase encodes a polypeptide of 439 amino acids with an estimated molecular weight of 50,474. The deduced amino acid sequence of thermophilic C. thermosulfurogenes xylose isomerase displayed higher homology with those of thermolabile xylose isomerases from Bacillus subtilis (70%) and Escherichia coli (50%) than with those of thermostable xylose isomerases from Ampullariella (22%), Arthrobacter (23%), and Streptomyces violaceoniger (24%). Several discrete regions were highly conserved throughout the amino acid sequences of all these enzymes. To identify the histidine residue of the active site and to elucidate its function during enzymatic xylose or glucose isomerization, histidine residues at four different positions in the C. thermosulfurogenes enzyme were individually modified by site-directed mutagenesis. Substitution of His101 by phenylalanine completely abolished enzyme activity whereas substitution of other histidine residues by phenylalanine had no effect on enzyme activity. When His101 was changed to glutamine, glutamic acid, asparagine, or aspartic acid, approximately 10-16% of wild-type enzyme activity was retained by the mutant enzymes. The Gln101 mutant enzyme was resistant to diethylpyrocarbonate inhibition which completely inactivated the wild-type enzyme, indicating that His101 is the only essential histidine residue involved directly in enzyme catalysis. The constant Vmax values of the Gln101, Glu101, Asn101, and Asp101 mutant enzymes over the pH range of 5.0-8.5 indicate that protonation of His101 is responsible for the reduced Vmax values of the wild-type enzyme at pH below 6.5. Deuterium isotope effects by D-[2-2H]glucose on the rate of glucose isomerization indicated that hydrogen transfer and not substrate ring opening is the rate-determining step for both the wild-type and Gln101 mutant enzymes. These results suggest that the enzymatic sugar isomerization does not involve a histidine-catalyzed proton transfer mechanism. Rather, essential histidine functions to stabilize the transition state by hydrogen bonding to the C5 hydroxyl group of the substrate and this enables a metal-catalyzed hydride shift from C2 to C1.[Abstract] [Full Text] [Related] [New Search]