These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Atomic force microscopy-based molecular studies on the recognition of immunogenic chlorinated ovalbumin by macrophage receptors. Author: Zapotoczny S, Biedroń R, Marcinkiewicz J, Nowakowska M. Journal: J Mol Recognit; 2012 Feb; 25(2):82-8. PubMed ID: 22290769. Abstract: This report presents simple and reliable approach developed to study the specific recognition events between chlorinated ovalbumin (OVA) and macrophages using atomic force microscopy (AFM). Thanks to the elimination of nonspecific adhesion, the interactions of the native and chlorinated OVA with a membrane of macrophages could be quantified using exclusively the so-called adhesion frequency (AF). The proposed system not only enabled the application of AFM-based force measurements for such poorly defined ligand-receptor pairs but also significantly improved both the acquisition and the processing of the data. The proteins were immobilized on the gold-coated AFM tips from the aqueous solutions containing charged thiol adsorbates. Such surface dilution of the proteins ensured the presence of single or just a few macromolecules at the tip-surface contact. The formation of negatively charged monolayer on the tip dramatically limited its nonspecific interactions with the macrophage surface. In such systems, AF was used as a measure of the recognition events even if the interaction forces varied significantly for sets of measurements. The system with the native OVA, a weak immunogen, showed only negligible AF compared with 85% measured for the immunogenic chlorinated OVA. The AF values varied with the tip-macrophage contact time and loading velocity. Blocking of the receptors by the chlorinated OVA was also confirmed. The developed approach can be also used to study other ligand-receptor interactions in poorly defined biological systems with intrinsically broad distribution of the rupture forces, thus opening new fields for AFM-based recognition on molecular level.[Abstract] [Full Text] [Related] [New Search]