These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antigenic analysis of the coat protein of beet necrotic yellow vein virus by means of monoclonal antibodies.
    Author: Koenig R, Commandeur U, Lesemann DE, Burgermeister W, Torrance L, Grassi G, Alric M, Kallerhoff J, Schots A.
    Journal: J Gen Virol; 1990 Oct; 71 ( Pt 10)():2229-32. PubMed ID: 2230729.
    Abstract:
    By means of monoclonal antibodies (MAbs), five (groups of) epitopes were identified on particles of beet necrotic yellow vein virus (BNYVV). Epitopes 1 and 2, which were located on the opposite extremities of virus particles, are discontinuous (SDS-labile) epitopes which were destroyed when the particles were treated with trypsin. Epitope 3 is a continuous (SDS-stable) epitope located at the same extremity as epitope 2. It was not destroyed when the particles were treated with trypsin and was present on an Escherichia coli-expressed fusion protein containing amino acids (aa) 1 to 103 of the BNYVV coat protein. The continuous epitope 4, which was located along the entire length of the particles, was found to be present on a fusion protein containing aa 104 to 188 of the BNYVV coat protein but not on trypsin-treated virus particles. In Western blots, these treated particles yielded two slightly smaller coat proteins which failed to react with MAbs specific for epitope 4 but did react with polyclonal antisera and MAbs specific for epitope 3. BNYVV coat protein has a trypsin cleavage site on the carboxyl side of arginine in position 182, so it is therefore suggested that epitope 4 is located on the exposed C terminus, which is composed of aa 183 to 188. Epitope 5 was also located along the entire length of the particles but in a more uneven distribution than epitope 4. This may be because it is a discontinuous epitope that is very sensitive to subtle changes in protein conformation.
    [Abstract] [Full Text] [Related] [New Search]