These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic ecosystems. Author: Rasconi S, Niquil N, Sime-Ngando T. Journal: Environ Microbiol; 2012 Aug; 14(8):2151-70. PubMed ID: 22309120. Abstract: Fungal parasitism is recurrent in plankton communities, especially in the form of parasitic chytrids. However, few attempts have been made to study the community structure and activity of parasites at the natural community level. To analyse the dynamics of zoosporic fungal parasites (i.e. chytrids) of phytoplankton, samples were collected from February to December 2007 in two freshwater lakes. Infective chytrids were omnipresent in lakes, with higher diversity of parasites and infected phytoplankton than in previous studies. The abundance and biomass of parasites were significantly higher in the productive Lake Aydat than in the oligomesotrophic Lake Pavin, while the infection prevalence in both lakes were similar and averaged about 20%. The host species composition and their size appeared as critical for chytrid infectivity, the larger hosts being more vulnerable, including pennate diatoms and desmids in both lakes. The highest prevalence (98%) was noted for the autumn bloom of the cyanobacterium Anabaena flosaquae facing the parasite Rhizosiphon crassum in Lake Aydat. Because parasites killed their hosts, this implies that cyanobacterial blooms, and other large size inedible phytoplankton blooms as well, may not totally represent trophic bottlenecks because their zoosporic parasites can release dissolved substrates for microbial processes through host destruction, and provide energetic particles as zoospores for grazers. Overall, we conclude that the parasitism by zoosporic fungi represents an important ecological driving force in the food web dynamics of aquatic ecosystems, and infer general empirical models on chytrid seasonality and trophodynamics in lakes.[Abstract] [Full Text] [Related] [New Search]