These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cerebrovascular and metabolic effects on the rat brain of focal Nd:YAG laser irradiation. Author: Kiessling M, Herchenhan E, Eggert HR. Journal: J Neurosurg; 1990 Dec; 73(6):909-17. PubMed ID: 2230973. Abstract: To investigate the effects of focal neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation (lambda = 1060 nm) on regional cerebral blood flow, cerebral protein synthesis, and blood-brain barrier permeability, the parietal brain surface of 44 rats was irradiated with a focused laser beam at a constant output energy of 30 J. Survival times ranged from 5 minutes to 48 hours. Laser irradiation immediately caused well-defined cortical coagulation necrosis. Within 5 minutes after unilateral irradiation, 14C-iodoantipyrine autoradiographs demonstrated severely reduced blood flow to the irradiation site and perilesional neocortex, but a distinct reactive hyperemia in all other areas of the forebrain. Apart from a persistent ischemic focus in the vicinity of the cortical coagulation necrosis, blood flow alterations in remote areas of the brain subsided within 3 hours after irradiation. Autoradiographic assessment of 3H-tyrosine incorporation into brain proteins revealed rapid onset and prolonged duration of protein synthesis inhibition in perifocal morphologically intact cortical and subcortical structures. Impairment of amino acid incorporation proved to be completely reversible within 48 hours. Immunoautoradiographic visualization of extravasated plasma proteins using 3H-labeled rabbit anti-rat immunoglobulins-showed that, up to 1 hour after irradiation, immunoreactive proteins were confined to the neocortex at the irradiation site. At 4 hours, vasogenic edema was present in the vicinity of the irradiation site and the subcortical white matter, and, at later stages (16 to 36 hours), also extended into the contralateral hemisphere. Although this was followed by a gradual decrease in labeling intensity, resolution of edema was still not complete after 48 hours. Analysis of sequential functional changes in conjunction with morphological alterations indicates that the evolution of morphological damage after laser irradiation does not correlate with the time course and spatial distribution of protein synthesis inhibition or vasogenic edema. Although the central coagulation necrosis represents a direct effect of radiation, the final size of the laser-induced lesion is determined by a delayed colliquation necrosis due to persistent perifocal ischemia. Extent and severity of ischemia in a zone with initial preservation of neuroglial cells can be explained by the optical properties of the Nd:YAG laser; extensive scattering of light within brain parenchyma associated with a high blood-to-brain absorption ratio selectively affects blood vessels outside the irradiation focus.[Abstract] [Full Text] [Related] [New Search]