These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of ryanodine receptors in tetanic sciatic stimulation-induced long-term potentiation of spinal dorsal horn and persistent pain in rats.
    Author: Lü N, Cheng LZ, Zhang YQ, Lü BC, Li YQ, Zhao ZQ.
    Journal: J Neurosci Res; 2012 May; 90(5):1096-104. PubMed ID: 22315169.
    Abstract:
    Tetanic stimulation of the sciatic nerve induces long-term potentiation (LTP) of C-fiber-evoked field potentials in the spinal dorsal horn and persistent pain, suggesting that spinal LTP may be a substrate for central sensitization of the pain pathway. However, its cellular mechanism remains unclear. The present study provides electrophysiological and behavioral evidence for the involvement of ryanodine receptor (RyR) in the induction of spinal LTP and persistent pain in rats. The specific inhibitor of ryanodine receptor, ryanodine and dantrolene, dose dependently blocked the induction, but not maintenance, of spinal LTP and reduced persistent pain behaviors induced by tetanic sciatic stimulation. Both cyclic ADP ribose (cADPR), an endogenous agonist of RyR, and (±)-1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluromethyl)-phenyl]-3-pyridine carboxylic acid methyl ester (Bay K 8644), an agonist of L-type calcium channel, attenuated ryanodine-induced inhibition. Immunohistochemistry and electron microscopic observation showed that RyR subtypes RyR1 and RyR3 were located in the spinal dorsal horn. The results suggest that RyRs are involved in synaptic plasticity of the spinal pain pathway and may be a novel target for treating pain. © 2012 Wiley Periodicals, Inc.
    [Abstract] [Full Text] [Related] [New Search]